Accessing M easurement Data and
Controlling the
Vector Network Analyzer
viaDDE

Application Note 1Ez33 oL =

Subject to change
28 April 1997, Johannes Ganzert

Products:
ZVR
ZVRE
ZVRL

&

ROHDE&SCHWARZ

Excel File
An Excel5 file called Zvrdde.xls is provided with this application note. See section "Excel" and directory English\Tech_inf\Applic\Excel on this CD-ROM.

1 Overview

The RSIB interface enables the network analyzers of the ZVR family to be controlled by means of
Windows applications via DDE. The interface functions are contained in the DLL RSI B. DLL . The other
DLL RSDDE. DLL provides functions for the DDE access to the instrument firmware. These functions are
used by RSl B. DLL . The interface of these functions greatly corresponds to that of National Instruments
for programming the GPIB. The function names are similar to those of the NI library but preceded by
RSDLL. The two DLLs are part of the firmware and are updated with the firmware update kits.

The following table gives an overview of the available functions:

Function Description

RSDLLi bfi nd() Returns a handle to device

RSDLLi bwrt () Writes null terminated string to device
RSDLLi brd() Reads string from device

RSDLLi [wrt () Writes count of bytes to device
RSDLLi I rd() Reads count of bytes from device
RSDLLi wrtf() Sends contents of file to device
RSDLLi | rdf () Reads data from device into file.

RSDLLTest Srq() | Tests for service request
RSDLLWAi t Srq() |Waits until device issues a service request

RSDLLi bt no() Sets timeout limit for device

RSDLLi bsre() Sets device to remote/local

RSDLLi bl oc() Sets device temporary to local

RSDLLi beot () Disable/enable END message at write operations
2 Installation and Configuration

By default the DLLs can be found in the directory C.\ RSI B.
Copy RSI B. DLL and RSDDE. DLL to the Windows directory or to the applications directory.

3 RSIB Programming Interface

The following section describes all functions contained in RSI B. DLL for use in control applications. On
the instrument’s hard disk are files that contain the declarations of the DLL functions and the definition of
error codes for the various programming languages.

Visual Basic: "RSIB. BAS' (D \ RUNTI ME\ RSI B)
C: "RSI BC. H' (D \RUNTI ME\ RSI B)
Winword: " RSI BVB. BAS' (D: \ RUNTI ME\ RS B)

Similar to the National Instruments interface command execution can be checked by means of the
variables i bsta, i berr andi bcnt| . Therefore all functions use references to these variables. The
status word i bst a is returned merely as a function value by all but one function.

1EZ33_OE.DOC 2 22 May 1997

Status word - ibsta

All functions return a status word which contains information about the state of the RSIB interface. The
following bits are used:

Mnemonic Bit |Hex value |Description
Pos

ERR 15 | 8000 Function terminated with an error. If this bit is set, a more specific
error code is setini berr .

TIMO 14 | 4000 Timeout occurred during function execution. The following cases
may cause this error:
During wait for SRQ with the function RSDLLWMi t Srq() .
No acknowledge is received after sending data with the functions
RSDLLi bwt () or RSDLLi lwt() .
No answer from device after a data request with RSDLLi brd() or
RSDLLi | rd() .

CMPL 8 0100 Set if the answer to a data request was completely read. If data is
read with RSDLLi | rd() and the answer exceeds count of bytes
the bit is cleared.

Error variable - iberr

If the ERR bit (8000h) is set in the status word, then i ber r contains an error code which specifies the
error more precisely. The RSIB has its own error codes independent of the NI interface.

Error Error code |Description

| BERR DEVI CE_REG STER 1 RSIB.DLL cannot register any new device.

I BERR_CCNNECT 2 The connection to the device failed.

I BERR_NO _DEVI CE 3 An interface function has been called with an invalid device handle.
| BERR MEM 4 No free memory available.

I BERR Tl MEQUT 5 Timeout has occurred.

Count variable - ibcntl

The variable ibcntl is updated with the number of bytes transmitted on every read or write function call.

RSDLLibeot

VB format: Functi on RSDLLi beot (ByVal ud% ByVal v% ibsta% iberr%
ibcentl & As Integer

C format: voi d FAR PASCAL RSDLLi beot (short ud, short v, short far *ibsta,
short far *iberr, unsigned long far *ibcntl)

Description: Disable/enable END message after write operations.

Parameters: ud The handle ud specifies a device that has been determined with
the function RSDLLi bf i nd() .
Y 0 - no END message

1 - send END message

Notes: If the END message is disabled, data of one command can be sent with multiple calls
to write functions. The END message must be enabled before sending the last data
block.

Example: See RSDLLi bwr t f ()

1EZ33_OE.DOC

3 22 May 1997

RSDLLibfind ()

VB format: Function RSDLLi bfind (ByVal udNane$, ibsta% iberr% ibcntl& As
I nt eger
C format: short FAR PASCAL RSDLLi bfind(char far *udNane, short far
*ibsta, short far *iberr, unsigned long far *ibcntl)
Description: The function returns a handle for the device named udNane .
Parameters: udNane Name of the device
Notes: This function must be called first of all.
The return value is a handle which is used by all other functions in order to address the
device. If the device with name udNane is not found the return value is negative.
For the DDE-Interface the device the name " @ ocal " will be used.
Example: See RSDLLI bw t ()
RSDLLibloc
VB format: Function RSDLLi bl oc (ByVal ud% ibsta% iberr% ibcntl& As
I nt eger
C format: voi d FAR PASCAL RSDLLi bl oc(short ud, short far *ibsta, short
far *iberr, unsigned long far *ibcntl)
Description: Switches the instrument temporarily to local state.
Parameter: ud The handle ud specifies a device that has been
determined with the function RSDLLi bf i nd() .
Notes: If the instrument was in the remote state prior to the call of this function it will be

switched back to the remote state on the next access of the instrument by any other
function of RSIB.DLL. The function is irrelevant in the local state.

RSDLLibrd()

VB format:

C format:

Description:

Parameters:

Notes:

1EZ33_OE.DOC

Function RSDLLi brd (ByVal ud% ByVal Rd$, ibsta% iberr%
i bentl & As Integer
short FAR PASCAL RSDLLi brd(short ud, char far *Rd, short far

*i bsta, short far *iberr, unsigned long far *ibcntl)
Reads data into the string Rd from the instrument specified by the handle ud.

ud The handle ud specifies a device that has been
determined with the function RSDLLi bf i nd() .

Rd String into which the read data are copied.

This function fetches replies of the IEC/IEEE-bus parser to a query command.
When programming in Visual Basic a string of sufficient length must be generated
before calling this function. This can be accomplished with a string definition or by
using the command Space$() .

4 22 May 1997

Generating a string of length 100:
DmRd as String * 100

DmRd as String
Rd = Space$(100)

Example: See RSDLLI bw t ()

RSDLLibrdf()

VB format: Function RSDLLiI brdf (ByVal ud% ByVal file$, ibsta% iberr%
ibcentl & As Integer
C format: short FAR PASCAL RSDLLi brd(short ud, char far *file, short far
*i bsta, short far *iberr, unsigned |long far *ibcntl)
Description: Reads data from device with handle ud into file.
Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLi bf i nd() .
file File that stores the data which have been read.
Notes: This functions allows reading of data with size greater than 64Kb from device.

The filename may contain drive and path.

Example: See RSDLLi bwrtf ()
RSDLLibwrt
VB format: Function RSDLLi bwt (ByVal ud% ByVal Wt$, ibsta% iberr%
ibcentl & As Integer
C format: short FAR PASCAL RSDLLi bwt(short ud, char far *Wt, short far
*i bsta, short far *iberr, unsigned long far *ibcntl)
Description: Sends commands and data to the instrument specified by handle ud.
Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLi bf i nd() .
Wt String sent to the instrument.
Notes: Setting and query commands can be sent to the IEC/IEEE-bus parser of the

instrument with the function RSDLLI bwr t () . The string parameter Wrt must be null
terminated. The function automatically appends an EOS byte (0Ah) to the string.

Example: In the following Visual Basic example the start frequency of the instrument will be
gueried.
D mibsta As Integer ' status variable
D miberr As Integer ' error variable
Dmibcntl As Long ' count variable
D mud As I|nteger " Unit Descriptor (handle) for the instrument
DmOrd As String " command string
D m Response As String ' response string

' Set up link to network anal yzer
ud = RSDLLi bfind("@ocal ", ibsta, iberr, ibcntl)
If (ud < 0) Then
' no connection established
' place error handling here
End | f

1EZ33_OE.DOC 5 22 May 1997

send query command to the instrunent
Omd = " SENS: FREQ STAR?"
If (RSDLLi bwt(ud, Om, ibsta, iberr, ibcntl) And | BSTA ERR) Then
pl ace error handling here
End |f

al | ocate space for response string
Response = Space$(100)

query instrument reply
If (RSDLLi brd(ud, Response, ibsta, iberr, ibcntl) And | BSTA ERR) Then
pl ace error handling here

End | f
RSDLLibwrtf
VB format: Function RSDLLIi bwtf (ByVal ud% ByVal file$, ibsta% iberr%
i bentl & As Integer
C format: short FAR PASCAL RSDLLi bwt(short ud, char far *Wt, short far
*i bsta, short far *iberr, unsigned long far *ibcntl)
Description: Sends contents of file to device with handle ud.
Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLi bf i nd() .
file File whose contents is to be written to device.
Notes: The function RSDLLi bwrt () allows setup and query commands to be send to the

IEC/IEEE- bus parser of the instrument.

Whether data are interpreted as complete commands may be set up with the function

RSDLLi beot ()
Example: The following example performs a save/recall via DDE
D mibsta As Integer ' status variable
D miberr As Integer " error variable
Dmibcntl As Long ' count variable
D mud As I|nteger " Unit Descriptor (handle) for the instrument
DmOrd As String " command string

Set up link to network anal yzer
ud = RSDLLi bfind("@ocal ", ibsta, iberr, ibcntl)
If (ud < 0) Then
error handling
End | f

Get setup fromdevice
Om = "SYST: SET?"
RSDLLi bwt (ud, O, ibsta, iberr, ibcntl) And | BSTA ERR

wite response to file
RSDLLi brdf (ud, "C\db.sav", ibsta, iberr, ibcntl)

reset device
RSDLLi bwt (ud, "*RST", ibsta, iberr, ibcntl)

restore saved setup
di sabl e END nmessage
RSDLLi beot (ud, 0, ibsta, iberr, ibcntl) And | BSTA ERR
send comrand
RSDLLi bwt (ud, "SYST:SET ", ibsta, iberr, ibcntl) And | BSTA ERR
enabl e END nessage
RSDLLi beot (ud, 1, ibsta, iberr, ibcntl) And | BSTA ERR
send data
RSDLLi bwtf (ud, "C\db.sav", ibsta, iberr, ibcntl)

1EZ33_OE.DOC 6 22 May 1997

RSDLLibsre

VB Format: Function RSDLLi bsre (ByVal ud% ByVal v% ibsta% iberr%
ibentl & As Integer
C format: voi d FAR PASCAL RSDLLi bsre(short ud, short v, short far *ibsta,
short far *iberr, unsigned long far *ibcntl)
Description: This function switches the instrument to local/remote.
Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLi bf i nd() .
v Instrument status
0 - local
1 - remote
RSDLLibtmo
VB format: Function RSDLLi btmo (ByVal ud% ByVal tnmo% ibsta% iberr%
i bentl & As Integer
C format: voi d FAR PASCAL RSDLLi bt mo(short ud, short tno, short far
*i bsta, short far *iberr, unsigned long far *ibcntl)
Description: Sets the timeout limit for the device.
Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLi bf i nd() .
t no Timeout time in seconds.
Notes: A timeout may occur in the following cases:
During wait for SRQ with the function RSDLLWMi t Srq() .
During wait for acknowledge to a command, sent with RSDLLi bwt () or
RSDLLi lwt() .
During wait for data, which were requested by RSDLLi brd() or
RSDLLi I rd() .
The default value is 5 seconds.
Example: See RSDLLWI t SRQ)

1EZ33_OE.DOC

7 22 May 1997

RSDLLilrd

VB format: Function RSDLLi I rd (ByVal ud% ByVal Rd$, ByVal Cnté&, ibsta%
iberr% ibcntl& As Integer

C format: short FAR PASCAL RSDLLilrd(short ud, char far *Rd, unsigned
long Ont, short far *ibsta, short far *iberr, unsigned |ong far
*ibentl)

Description: Reads Ont bytes from device with handle ud.

Parameters: ud The handle ud specifies a device that has been

determined with the function RSDLLi bf i nd() .
cnt Maximum number of bytes copied into the string
Rd by DLL function.

Notes: The function works similar to RSDLLi br d() except that Ont number of bytes to be
read into Rd can be explicitly specified using RSDLLi | rd() . With this function the
writing beyond the string end can be avoided with this function.

The bytes beyond count Cnt are lost.

Example: See RSDLLWI t SRQ)

RSDLLilwrt

VB format: Function RSDLLi lwt (ByVal ud% ByVal Wt$, ByVal Ont& ibsta%
iberr% ibcntl& As Integer

C format: short FAR PASCAL RSDLLilwt(short ud, char far *Wt,
unsi gned long nt, short far *ibsta, short far *iberr, unsigned
long far *ibcntl)

Description: Sends Cnt bytes to device with handle ud.

Parameters: ud The handle ud specifies a device that has been

determined with the function RSDLLi bf i nd() .
Wt String sent to the device.
Ont Number of bytes sent to the device.

Notes: The function sends similar to RSDLLi bwrt () data to a device. The end of data trans-
mission is determined by Cnt and not by the null termination of the string. Therefore
binary data containing null bytes can be transferred using this function. If the string is to
be terminated with EOS (0Ah), this EOS byte must be appended to the string.

Example: See RSDLLWi t SRQ)

RSDLLTestSRQ

VB format: Function RSDLLTest Srq (ByVal ud% Result% ibsta% iberr%

i bentl & As Integer

C format: voi d FAR PASCAL RSDLLTest Srg(short ud, short far *result, short
far *ibsta, short far *iberr, unsigned long far *ibcntl)

Description: Checks the status of the SRQ bit.

1EZ33_OE.DOC

8 22 May 1997

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLi bf i nd() .
resul t Reference to an integer variable wherein the DLL returns the
status of the SRQ bit.
0 - no SRQ.
1 - SRQ set, device issued a service request.
Notes: The function returns immediately with the current value of the SRQ bit.
RSDLLWaitSrq
VB format: Function RSDLLWAit Srq (ByVal ud% Result% ibsta% iberr%
ibcntl & As Integer
C format: voi d FAR PASCAL RSDLLWit Srg(short ud, short far *result, short
far *ibsta, short far *iberr, unsigned long far *ibcntl)
Description: The function waits until the device with handle ud issues a SRQ.
Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLi bf i nd() .
resul t Reference to an integer variable wherein the DLL returns the
status of the SRQ bit.
0 - no SRQ occurred within the timeout limit.
1 - SRQ set, device issued a service request.
Notes: The function waits until one of the two following events occurs:
the device issues a SRQ
the timeout limit set with RSDLLi bt mo() expires and no SRQ occurs
Example: In the following C sample program a single sweep is started on the instrument and a marker

1EZ33_OE.DOC

is set to the maximum level. Before the maximum search can be performed the sweep must
have finished. The synchronization is accomplished using the command " * OPC' (Operation
Complete). The application waits for the SRQ using RSDLLWai t Srq(). Afterwards the
marker search function is performed (" CALC. MARK: FUNC: MAX") and the response value
read (" CALC. MARK: FUNC: RESULT?").

#defi ne MAX_RESP_LEN 100

short i bsta, iberr;

unsi gned | ong ibentl;

short ud;

short srg;

char MaxPegel [MAX_RESP_LEN ;

// get handl e for instrunment
ud = RSDLLi bfind("@ocal ", & bsta, & berr, & becntl);

// set tinmeout for RSDLLWAitSrq() to 10 seconds
RSDLLi bt no(ud, 10, & bsta, & berr, & bcntl);

/1 if connection to instrunent valid
if (ud>=0) {

/1 activate SRQ by setting Event-Status-Register (ESR
/1 and enable ESB -bit w thin SRE register
RSDLLi bwt(ud, "*ESE 1;*SRE 32", & bsta, & berr, & bcntl);

/1 set instrument to single sweep node, start sweep and generate with
/1 "*OPC' a service request after sweep has been conpl et ed
RSDLLi bwt(ud, "INNT: CONT of f;INT;*CPC', & bsta, & berr, & bentl);

/1 wait for SRQ (at sweep end)
RSDLLWAI t Srq(ud, &srq, & bsta, & berr, & bcntl);

9 22 May 1997

/1 if sweep finished (nornal operation)

if (sra) {
// set marker to maxi numand read response (level)
RSDLLi bwt (ud, "CALC. MARK: FUNC: MAX', &i bsta, & berr, & bentl);
RSDLLi bwt (ud, "CALC. MARK: FUNC: RESULT?", & bsta, & berr, & bcntl);
RSDLLi | rd(ud, MaxPegel, MAX RESP_LEN, & bsta, & berr, & becntl);

el se {
; /1 timeout handling

}

el se {

; I/l error: device not found
}
}

4 Programming Hints

4.1 General

Data length: With RSDLLi brd() data up to 10000 bytes may be read. The function
RSDLLi | rd() has no limitations on the data length.

4.2 Visual Basic
Accessing the RSIB.DLL functions

In order to generate Visual Basic control applications using the DDE interface, the file RSI B. BAS
(D:\ RUNTI ME\ RSI B) should be added to the project to use the functions from RSIB.DLL.

Declaration of the DLL functions as p rocedures
All functions return the integer value ibsta. They are therefore declared in RSIB.BAS as follows:
Declare Function RSDLLxxx Lib "rsib.dll" (...) asInteger

However ibsta is also returned by reference as one of the function parameters. Therefore the functions
may be declared as procedures in the following manner:

Declare Sub RSDLLxxx Lib "rsib.dll" (...)
Generation of a reply buffer

Since the DLL returns null-terminated strings on replies, a string of sufficient size must be generated
before - the functions RSDLLi brd() or RSDLLi | rd() are called. Note that Visual Basic assigns the
string a size that will not be modified by the DLL The string size can be defined with one of the following
ways:

DmRd as String * 100

DmRd as String
Rd = Space$(100)

Reading trace data in real format Visual Basic

Replies from the instrument are always assigned to a string with the functions from RSI B. BAS. However
reading trace binary data in real format is much faster and the processing of float values simpler than
working with ASCII format. The assignment of the data to an array of float values can be done as follows:

1EZ33_OE.DOC 10 22 May 1997

The function declaration of RSDLLi br d() in RSI B. BAS remains unchanged:

Declare Function RSDLLibrd Lib "rsib.dll" (ByVal ud% ByVal Rd$, i bst a%
iberr% ibcntl& As Integer

To place data directly into an array of float values, the string variable must be replaced by a suitable
structure like the following:

Type TRACEREAL

len As String * 6 ' Header der Real Data "#42000"
Poi nt s(500) As Single " Float-Array
End Type

Note: The structure must be defined in a code module.
In order to pass the structure by reference to the DLL, a special function declaration must be created:

Decl are Functi on RSDLLi brdTraceReal Lib "rsib.dll" Aias "RSDLLi brd"
(ByVal ud% rd as Any, ibsta% iberr% ibcntl& As Integer

Using this function trace data can be read from a reply buffer of type TRACEREAL .

43 C/C++

Accessing the RSIB.DLL functions

The functions of the library RSIB.DLL are declared in the header file RSIBC.H. The DLL functions can be
linked to the C/C++ program in three different ways.

1. Generate the import library RSI B. LI B from RSI B. DLL using | MPLI B. EXE and add it to the project.
2. Specify the functions from RSI B. DLL in the module definition file (*.def) in the section | MPORTS.

3. Load the DLL at run time using the function LoadLi brary() and get the function pointers using
Cet ProcAddress() . Unload RSI B. DLL from memory with Fr eeLi brary() before exiting the
program.

In the first two cases the DLL will be loaded automatically at the startup of the application. It will be
unloaded at program end provided that no other applications use it. Visual Basic for Applications use the
third method in order to call functions from a DLL.

4.4 Excel

Microsoft Excel uses Visual Basic for Applications as macro language, so the functions of the library
RSIB.DLL can be used in their Visual Basic format. The following sample macro performs a band-filter
measurement and generates a hardcopy of the magnitude and phase of the transmission function. It uses
the English versions of the object and VBA libraries (XLEN50.0OLB and VBAEN.OLB). The macro has
been tested with the German version of Excel 5.0 and should run without modifications in other languages
since these two libraries are part of all Excel 5.0 installations. The macro is contained in the attached file
ZVRDDE. XLS. E

' BFi | Hcopy Macro
" Performband-filter neasurenent
' and neke hardcopy

Decl are Function RSDLLibfind Lib "RSIB.DLL" (ByVal udNane$, ibsta% iberr% ibcntl& As Integer
Decl are Function RSDLLibwt Lib "RSIB. DLL" (ByVal ud% ByVal Wt$, ibsta% iberr% ibcntl& As

I nt eger

Decl are Function RSDLLi brd Lib "RSIB. DLL" (ByVal ud% ByVal Rd$, ibsta% iberr% ibcntl& As

I nt eger

Decl are Function RSDLLibwtf Lib "RSIB.DLL" (ByVal ud% ByVal File$, ibsta% iberr% ibcntl& As
I nt eger

Decl are Function RSDLLi brdf Lib "RSIB. DLL" (ByVal ud% ByVal File$, ibsta% iberr% ibcntl& As
I nt eger

1EZ33_OE.DOC 11 22 May 1997

Excel File
File Zvrdde.xls can be found in directory English\Tech_inf\Applic\Excel on this CD-ROM.

Decl are Function RSDLLilwt Lib "RSIB. DLL" (ByVal ud% ByVal

ibcntl & As I|nteger

Decl are Function RSDLLilrd Lib "RSIB.DLL" (ByVal ud% ByVal
ibcntl & As I|nteger

Decl are Function RSDLLTestSrq Lib "RSIB.DLL" (ByVal ud% Result% ibsta% iberr% ibcntl& As
I nt eger
Decl are Function RSDLLWAItSrqg Lib "RSIB.DLL" (ByVal ud% Result% ibsta% iberr% ibcntl& As
I nt eger

Decl are Function RSDLLibtno Lib "RSIB.DLL" (ByVal ud% ByVal

I nt eger

Decl are Function RSDLLi bsre Lib "RSIB.DLL" (ByVal ud% ByVal

I nt eger
Decl are Function RSDLLibloc Lib "RSIB.DLL" (ByVal ud% ibsta% iberr% ibcntl& As I|nteger

Decl are Function RSDLLi beot Lib "RSIB.DLL" (ByVal ud% ByVal

I nt eger

Wt$, ByVal Ont& ibsta% iberr%

Rd$, ByVal Ont&, ibsta% iberr%

tmo% ibsta¥% iberr% ibcntl& As

v% ibsta% iberr% ibcntl& As

v% ibsta% iberr% ibcntl& As

Declare Sub RSDLLi bwts Lib "RSIB. DLL" (ByVal ud% ByVal Wt$, ibsta% iberr% ibcntl&)

d obal Const | BSTA ERR = &h8000

d obal Const | BSTA TI MO
d obal Const | BSTA QWL

&h4000
&h100

Q obal Const | BERR DEVI CE REQ STER = 1
d obal Const | BERR CONNECT = 2

d obal Const | BERR NO DEVICE = 3

d obal Const |BERR MEM = 4

d obal Const | BERR TIMEQUT = 5

d obal Const | BERR BUSY
d obal Const |BERR FILE

6
7

Sub BFi | Hcopy()

D mud% status
Dmbuffer$, cnd$
Dmibsta% iberr% ibcntlé&

get handl e for device
ud% = RSDLLi bfind("@ocal ", ibsta% iberr% ibcntl&)
If (ud% < 0) Then
' error - exit
msgText = "Coul d not connect to instrument”
msghbde = vbYes + vbCritical
msgTitle = "RSIB-Interface"
respo = MsgBox(nsgText, nmsghbde, msgTitle)
El se
reset device
cnd$ = "*RST"
' send SCPI conmand
status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&

set timeout to 30s

status = RSDLLi bt mo(ud% 30, ibsta% iberr% ibcntl&)
switch instrument to renote state

status = RSDLLi bsre(ud% 1, ibsta% iberr% ibcntl&)
turn display update on

cnd$ = ": SYST: DI SP: UPD ON'

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&)

set frequency range 2.2GH# ... 2.25GH#

cmd$ = ": SENS: FREQ STAR 2. 2GHz; : SENS: FREQ STCP 2. 25GH"
status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&)
set measured quantity to transm ssion forward (S21)
cmd$ = ": SENS1: FUNC ' XFR PON S21'

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&)
change display to dual split

cnd$ = ": D SP: FORM DSPLi t"

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl &)

' set format of channel 1 to magnitud% and channel 2 to group del ay

cmd$ = ": CALCL: FORM MAG\ : CALC2: FORM GDEL"

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
perform aut oscal e on channel 2

cnmd$ = ": Dl SP: WND2: TRACL: Y: SCAL: AUTO ONCe"

1EZ33_OE.DOC 12

22 May 1997

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
switch on bandfilter markers

cmd$ = ": CALCL: MARK1 QN : CALC1: MARK1: FUNC BFI L"

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
set filter search parans

cmd$ = ": CALCL: MARK1: FUNC: BW D 3dB"

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
set markers search function to bandpass filter node
cmd$ = ": CALCL: MARK1: FUNC: BW D. MODE BPASS'

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
switch to single sweep

cmd$ = ": I NI T: CONT OFF"
status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
cmd$ = ":INT: 1 MM*WAL"

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl &
per f orm sear ch

cmd$ = ": CALCL: MARKL: SEARCH *WAl "

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&

generate hardcopy in WF format, portrait, to file c:\user\data\bfilt.wnf

cmd$ = ": MVEM CDI R ' C \ USER DATA' "

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
cmd$ = ": MVEM NAME ' BFI LT. WWF "

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
cmd$ = ": HOOP: DEV: LANGL WWF; *\WAL "

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
cmd$ = ": HOOP: PAGE ORI PCRT"

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
cmd$ = ": HOOP: DEST ' MMEM "

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
start hardcopy

cnmd$ = ": HOCP: | M *WAI "

status = RSDLLi bwt (ud% cmd$, ibsta% iberr% ibcntl&
switch instrument back to | ocal

status = RSDLLi bsre(ud% O, ibsta% iberr% ibcntl&)
insert meta file

ChD r " C \ USER DATA"

Acti veSheet. Pictures. I nsert("BFILT. WF"). Sel ect

End |f

End Sub

1EZ33_OE.DOC 13 22 May 1997

CH) 521 [|pe | =g 10 cB. |REF 0 B [V. -9.0P6 b

= 2.200 GHz
11276039 Ml

o W
I ' 2
W
Yl N\\
EGEE // \\
/ N
e AN
i ™~

] T
EEE | EER [[LN POy oo nss |REF 500 ns |

3 us 240 Hz

|

oo HS/: <
- o B

2_us
ETHRTi P2 CH ETOR P25 GHz
Date: 28.4PR.37 15:40:23

45 Winword

The functions of the library RSI B. DLL can be accessed from Winword macros with some restrictions. The
function declarations contained in the file r si bwb. bas must be copied into the macro.

Restrictions:

Declaring functions with the statement Decl ar e allows for parameters of type integer to be passed by
value only. Since the functions of the library RSI B. DLL expect references for the variables ibsta, iberr and
ibcntl these must be declared as strings. This fact has to be taken into account when checking error
codes and requesting values from the instrument.

Note that Winword 2.0 and 6.0 do not use Visual Basic for Applications, the macro therefore is always
language specific.

Johannes Ganzert, 1ES1
Rohde & Schwarz
28 April 1997

1EZ33_OE.DOC 14 22 May 1997

	Start
	List of Application Notes
	Accessing Measurement Data and Controlling the ZVR
	 Overview
	Installation and Configuration
	RSIB Programming Interface
	Programming Hints
	General
	Visual Basic
	C / C++
	Excel
	Winword

