
Accessing Measurement Data and
Controlling the

Vector Network Analyzer
via DDE

Application Note 1EZ33_0L
Subject to change

28 April 1997, Johannes Ganzert

Products:
ZVR

ZVRE
ZVRL

Excel File
An Excel5 file called Zvrdde.xls is provided with this application note. See section "Excel" and directory English\Tech_inf\Applic\Excel on this CD-ROM.

1EZ33_0E.DOC 2 22 May 1997

1 Overview
The RSIB interface enables the network analyzers of the ZVR family to be controlled by means of
Windows applications via DDE. The interface functions are contained in the DLL RSIB.DLL . The other
DLL RSDDE.DLL provides functions for the DDE access to the instrument firmware. These functions are
used by RSIB.DLL . The interface of these functions greatly corresponds to that of National Instruments
for programming the GPIB. The function names are similar to those of the NI library but preceded by
RSDLL. The two DLLs are part of the firmware and are updated with the firmware update kits.

The following table gives an overview of the available functions:

Function Description
RSDLLibfind() Returns a handle to device
RSDLLibwrt() Writes null terminated string to device
RSDLLibrd() Reads string from device
RSDLLilwrt() Writes count of bytes to device
RSDLLilrd() Reads count of bytes from device
RSDLLilwrtf() Sends contents of file to device
RSDLLilrdf() Reads data from device into file.
RSDLLTestSrq() Tests for service request
RSDLLWaitSrq() Waits until device issues a service request
RSDLLibtmo() Sets timeout limit for device
RSDLLibsre() Sets device to remote/local
RSDLLibloc() Sets device temporary to local
RSDLLibeot() Disable/enable END message at write operations

2 Installation and Configuration
By default the DLLs can be found in the directory C:\RSIB .

Copy RSIB.DLL and RSDDE.DLL to the Windows directory or to the applications directory.

3 RSIB Programming Interface
The following section describes all functions contained in RSIB.DLL for use in control applications. On
the instrument´s hard disk are files that contain the declarations of the DLL functions and the definition of
error codes for the various programming languages.

Visual Basic: "RSIB.BAS" (D:\RUNTIME\RSIB)

C: "RSIBC.H" (D:\RUNTIME\RSIB)

Winword: "RSIBWB.BAS"(D:\RUNTIME\RSIB)

Similar to the National Instruments interface command execution can be checked by means of the
variables ibsta , iberr and ibcntl . Therefore all functions use references to these variables. The
status word ibsta is returned merely as a function value by all but one function.

1EZ33_0E.DOC 3 22 May 1997

Status word - ibsta

All functions return a status word which contains information about the state of the RSIB interface. The
following bits are used:

Mnemonic Bit
Pos
.

Hex value Description

ERR 15 8000 Function terminated with an error. If this bit is set, a more specific
error code is set in iberr .

TIMO 14 4000 Timeout occurred during function execution. The following cases
may cause this error:
During wait for SRQ with the function RSDLLWaitSrq() .
No acknowledge is received after sending data with the functions
RSDLLibwrt() or RSDLLilwrt() .
No answer from device after a data request with RSDLLibrd() or
RSDLLilrd() .

CMPL 8 0100 Set if the answer to a data request was completely read. If data is
read with RSDLLilrd() and the answer exceeds count of bytes
the bit is cleared.

Error variable - iberr

If the ERR bit (8000h) is set in the status word, then iberr contains an error code which specifies the
error more precisely. The RSIB has its own error codes independent of the NI interface.

Error Error code Description
IBERR_DEVICE_REGISTER 1 RSIB.DLL cannot register any new device.
IBERR_CONNECT 2 The connection to the device failed.
IBERR_NO_DEVICE 3 An interface function has been called with an invalid device handle.
IBERR_MEM 4 No free memory available.
IBERR_TIMEOUT 5 Timeout has occurred.

Count variable - ibcntl

The variable ibcntl is updated with the number of bytes transmitted on every read or write function call.

RSDLLibeot

VB format: Function RSDLLibeot (ByVal ud%, ByVal v%, ibsta%, iberr%,
ibcntl&) As Integer

C format: void FAR PASCAL RSDLLibeot(short ud, short v, short far *ibsta,
short far *iberr, unsigned long far *ibcntl)

Description: Disable/enable END message after write operations.
Parameters: ud The handle ud specifies a device that has been determined with

the function RSDLLibfind() .
v 0 - no END message

1 - send END message
Notes: If the END message is disabled, data of one command can be sent with multiple calls

to write functions. The END message must be enabled before sending the last data
block.

Example: See RSDLLibwrtf()

1EZ33_0E.DOC 4 22 May 1997

RSDLLibfind()

VB format: Function RSDLLibfind (ByVal udName$, ibsta%, iberr%, ibcntl&) As
Integer

C format: short FAR PASCAL RSDLLibfind(char far *udName, short far
*ibsta, short far *iberr, unsigned long far *ibcntl)

Description: The function returns a handle for the device named udName .

Parameters: udName Name of the device

Notes: This function must be called first of all.

The return value is a handle which is used by all other functions in order to address the
device. If the device with name udName is not found the return value is negative.

For the DDE-Interface the device the name "@local" will be used.

Example: See RSDLLibwrt()

RSDLLibloc

VB format: Function RSDLLibloc (ByVal ud%, ibsta%, iberr%, ibcntl&) As
Integer

C format: void FAR PASCAL RSDLLibloc(short ud, short far *ibsta, short
far *iberr, unsigned long far *ibcntl)

Description: Switches the instrument temporarily to local state.

Parameter: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

Notes: If the instrument was in the remote state prior to the call of this function it will be
switched back to the remote state on the next access of the instrument by any other
function of RSIB.DLL. The function is irrelevant in the local state.

RSDLLibrd()

VB format: Function RSDLLibrd (ByVal ud%, ByVal Rd$, ibsta%, iberr%,
ibcntl&) As Integer

C format: short FAR PASCAL RSDLLibrd(short ud, char far *Rd, short far
*ibsta, short far *iberr, unsigned long far *ibcntl)

Description: Reads data into the string Rd from the instrument specified by the handle ud.

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

Rd String into which the read data are copied.

Notes: This function fetches replies of the IEC/IEEE-bus parser to a query command.
When programming in Visual Basic a string of sufficient length must be generated
before calling this function. This can be accomplished with a string definition or by
using the command Space$() .

1EZ33_0E.DOC 5 22 May 1997

Generating a string of length 100:
• Dim Rd as String * 100

• Dim Rd as String
Rd = Space$(100)

Example: See RSDLLibwrt()

RSDLLibrdf()

VB format: Function RSDLLibrdf (ByVal ud%, ByVal file$, ibsta%, iberr%,
ibcntl&) As Integer

C format: short FAR PASCAL RSDLLibrd(short ud, char far *file, short far
*ibsta, short far *iberr, unsigned long far *ibcntl)

Description: Reads data from device with handle ud into file.

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

file File that stores the data which have been read.

Notes: This functions allows reading of data with size greater than 64Kb from device.

The filename may contain drive and path.

Example: See RSDLLibwrtf()

RSDLLibwrt

VB format: Function RSDLLibwrt (ByVal ud%, ByVal Wrt$, ibsta%, iberr%,
ibcntl&) As Integer

C format: short FAR PASCAL RSDLLibwrt(short ud, char far *Wrt, short far
*ibsta, short far *iberr, unsigned long far *ibcntl)

Description: Sends commands and data to the instrument specified by handle ud.

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

Wrt String sent to the instrument.

Notes: Setting and query commands can be sent to the IEC/IEEE-bus parser of the
instrument with the function RSDLLibwrt() . The string parameter Wrt must be null
terminated. The function automatically appends an EOS byte (0Ah) to the string.

Example: In the following Visual Basic example the start frequency of the instrument will be
queried.

 Dim ibsta As Integer ' status variable
 Dim iberr As Integer ' error variable
 Dim ibcntl As Long ' count variable
 Dim ud As Integer ' Unit Descriptor (handle) for the instrument
 Dim Cmd As String ' command string
 Dim Response As String ' response string

 ' Set up link to network analyzer
 ud = RSDLLibfind("@local", ibsta, iberr, ibcntl)
 If (ud < 0) Then
 ' no connection established
 ' place error handling here
 End If

1EZ33_0E.DOC 6 22 May 1997

 ' send query command to the instrument
 Cmd = "SENS:FREQ:STAR?"
 If (RSDLLibwrt(ud, Cmd, ibsta, iberr, ibcntl) And IBSTA_ERR) Then
 ' place error handling here
 End If

 ' allocate space for response string
 Response = Space$(100)

 ' query instrument reply
 If (RSDLLibrd(ud, Response, ibsta, iberr, ibcntl) And IBSTA_ERR) Then
 ' place error handling here
 End If

RSDLLibwrtf

VB format: Function RSDLLibwrtf (ByVal ud%, ByVal file$, ibsta%, iberr%,
ibcntl&) As Integer

C format: short FAR PASCAL RSDLLibwrt(short ud, char far *Wrt, short far
*ibsta, short far *iberr, unsigned long far *ibcntl)

Description: Sends contents of file to device with handle ud.

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

file File whose contents is to be written to device.

Notes: The function RSDLLibwrt() allows setup and query commands to be send to the
IEC/IEEE- bus parser of the instrument.

Whether data are interpreted as complete commands may be set up with the function
RSDLLibeot() .

Example: The following example performs a save/recall via DDE

 Dim ibsta As Integer ' status variable
 Dim iberr As Integer ' error variable
 Dim ibcntl As Long ' count variable
 Dim ud As Integer ' Unit Descriptor (handle) for the instrument
 Dim Cmd As String ' command string

 ' Set up link to network analyzer
 ud = RSDLLibfind("@local", ibsta, iberr, ibcntl)
 If (ud < 0) Then
 ' error handling
 End If

 ' Get setup from device
 Cmd = "SYST:SET?"
 RSDLLibwrt(ud, Cmd, ibsta, iberr, ibcntl) And IBSTA_ERR

 ' write response to file
 RSDLLibrdf(ud, "C:\db.sav", ibsta, iberr, ibcntl)

 ' reset device
 RSDLLibwrt(ud, "*RST", ibsta, iberr, ibcntl)

 ' restore saved setup
 ' disable END message
 RSDLLibeot(ud, 0, ibsta, iberr, ibcntl) And IBSTA_ERR
 ' send command
 RSDLLibwrt(ud, "SYST:SET ", ibsta, iberr, ibcntl) And IBSTA_ERR
 ' enable END message
 RSDLLibeot(ud, 1, ibsta, iberr, ibcntl) And IBSTA_ERR
 ' send data
 RSDLLibwrtf(ud, "C:\db.sav", ibsta, iberr, ibcntl)

1EZ33_0E.DOC 7 22 May 1997

RSDLLibsre

VB Format: Function RSDLLibsre (ByVal ud%, ByVal v%, ibsta%, iberr%,
ibcntl&) As Integer

C format: void FAR PASCAL RSDLLibsre(short ud, short v, short far *ibsta,
short far *iberr, unsigned long far *ibcntl)

Description: This function switches the instrument to local/remote.

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

v Instrument status
0 - local
1 - remote

RSDLLibtmo

VB format: Function RSDLLibtmo (ByVal ud%, ByVal tmo%, ibsta%, iberr%,
ibcntl&) As Integer

C format: void FAR PASCAL RSDLLibtmo(short ud, short tmo, short far
*ibsta, short far *iberr, unsigned long far *ibcntl)

Description: Sets the timeout limit for the device.

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

tmo Timeout time in seconds.

Notes: A timeout may occur in the following cases:
• During wait for SRQ with the function RSDLLWaitSrq() .
• During wait for acknowledge to a command, sent with RSDLLibwrt() or

RSDLLilwrt() .
• During wait for data, which were requested by RSDLLibrd() or

RSDLLilrd() .

The default value is 5 seconds.

Example: See RSDLLWaitSRQ()

1EZ33_0E.DOC 8 22 May 1997

RSDLLilrd

VB format: Function RSDLLilrd (ByVal ud%, ByVal Rd$, ByVal Cnt&, ibsta%,
iberr%, ibcntl&) As Integer

C format: short FAR PASCAL RSDLLilrd(short ud, char far *Rd, unsigned
long Cnt, short far *ibsta, short far *iberr, unsigned long far
*ibcntl)

Description: Reads Cnt bytes from device with handle ud.

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

cnt Maximum number of bytes copied into the string
Rd by DLL function.

Notes: The function works similar to RSDLLibrd() except that Cnt number of bytes to be
read into Rd can be explicitly specified using RSDLLilrd() . With this function the
writing beyond the string end can be avoided with this function.
The bytes beyond count Cnt are lost.

Example: See RSDLLWaitSRQ()

RSDLLilwrt

VB format: Function RSDLLilwrt (ByVal ud%, ByVal Wrt$, ByVal Cnt&, ibsta%,
iberr%, ibcntl&) As Integer

C format: short FAR PASCAL RSDLLilwrt(short ud, char far *Wrt,
unsigned long Cnt, short far *ibsta, short far *iberr, unsigned
long far *ibcntl)

Description: Sends Cnt bytes to device with handle ud.
Parameters: ud The handle ud specifies a device that has been

determined with the function RSDLLibfind() .
Wrt String sent to the device.
Cnt Number of bytes sent to the device.

Notes: The function sends similar to RSDLLibwrt() data to a device. The end of data trans-
mission is determined by Cnt and not by the null termination of the string. Therefore
binary data containing null bytes can be transferred using this function. If the string is to
be terminated with EOS (0Ah), this EOS byte must be appended to the string.

Example: See RSDLLWaitSRQ()

RSDLLTestSRQ

VB format: Function RSDLLTestSrq (ByVal ud%, Result%, ibsta%, iberr%,
ibcntl&) As Integer

C format: void FAR PASCAL RSDLLTestSrq(short ud, short far *result, short
far *ibsta, short far *iberr, unsigned long far *ibcntl)

Description: Checks the status of the SRQ bit.

1EZ33_0E.DOC 9 22 May 1997

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

result Reference to an integer variable wherein the DLL returns the
status of the SRQ bit.
0 - no SRQ.
1 - SRQ set, device issued a service request.

Notes: The function returns immediately with the current value of the SRQ bit.

RSDLLWaitSrq

VB format: Function RSDLLWaitSrq (ByVal ud%, Result%, ibsta%, iberr%,
ibcntl&) As Integer

C format: void FAR PASCAL RSDLLWaitSrq(short ud, short far *result, short
far *ibsta, short far *iberr, unsigned long far *ibcntl)

Description: The function waits until the device with handle ud issues a SRQ.

Parameters: ud The handle ud specifies a device that has been
determined with the function RSDLLibfind() .

result Reference to an integer variable wherein the DLL returns the
status of the SRQ bit.
0 - no SRQ occurred within the timeout limit.
1 - SRQ set, device issued a service request.

Notes: The function waits until one of the two following events occurs:
•• the device issues a SRQ
•• the timeout limit set with RSDLLibtmo() expires and no SRQ occurs

Example: In the following C sample program a single sweep is started on the instrument and a marker
is set to the maximum level. Before the maximum search can be performed the sweep must
have finished. The synchronization is accomplished using the command "*OPC" (Operation
Complete). The application waits for the SRQ using RSDLLWaitSrq(). Afterwards the
marker search function is performed ("CALC:MARK:FUNC:MAX") and the response value
read ("CALC:MARK:FUNC:RESULT?").

#define MAX_RESP_LEN 100

short ibsta, iberr;
unsigned long ibcntl;
short ud;
short srq;
char MaxPegel[MAX_RESP_LEN];

// get handle for instrument
ud = RSDLLibfind("@local", &ibsta, &iberr, &ibcntl);

// set timeout for RSDLLWaitSrq() to 10 seconds
RSDLLibtmo(ud, 10, &ibsta, &iberr, &ibcntl);

// if connection to instrument valid
if (ud >= 0) {

 // activate SRQ by setting Event-Status-Register (ESR)
 // and enable ESB -bit within SRE register
 RSDLLibwrt(ud, "*ESE 1;*SRE 32", &ibsta, &iberr, &ibcntl);

 // set instrument to single sweep mode, start sweep and generate with
 // "*OPC" a service request after sweep has been completed
 RSDLLibwrt(ud, "INIT:CONT off;INIT;*OPC", &ibsta, &iberr, &ibcntl);

 // wait for SRQ (at sweep end)
 RSDLLWaitSrq(ud, &srq, &ibsta, &iberr, &ibcntl);

1EZ33_0E.DOC 10 22 May 1997

 // if sweep finished (normal operation)
 if (srq) {

// set marker to maximum and read response (level)
RSDLLibwrt(ud, "CALC:MARK:FUNC:MAX", &ibsta, &iberr, &ibcntl);
RSDLLibwrt(ud, "CALC:MARK:FUNC:RESULT?", &ibsta, &iberr, &ibcntl);
RSDLLilrd(ud, MaxPegel, MAX_RESP_LEN, &ibsta, &iberr, &ibcntl);

}
 else {
 ; // timeout handling
 }
}
else {
 ; // error: device not found
}
}

4 Programming Hints

4.1 General
Data length: With RSDLLibrd() data up to 10000 bytes may be read. The function

RSDLLilrd() has no limitations on the data length.

4.2 Visual Basic

• Accessing the RSIB.DLL functions

In order to generate Visual Basic control applications using the DDE interface, the file RSIB.BAS
(D:\RUNTIME\RSIB) should be added to the project to use the functions from RSIB.DLL.

• Declaration of the DLL functions as p rocedures

All functions return the integer value ibsta. They are therefore declared in RSIB.BAS as follows:

Declare Function RSDLLxxx Lib "rsib.dll" (...) as Integer

However ibsta is also returned by reference as one of the function parameters. Therefore the functions
may be declared as procedures in the following manner:

Declare Sub RSDLLxxx Lib "rsib.dll" (...)

• Generation of a reply buffer

Since the DLL returns null-terminated strings on replies, a string of sufficient size must be generated
before - the functions RSDLLibrd() or RSDLLilrd() are called. Note that Visual Basic assigns the
string a size that will not be modified by the DLL The string size can be defined with one of the following
ways:

• Dim Rd as String * 100
• Dim Rd as String

Rd = Space$(100)

• Reading trace data in real format Visual Basic

Replies from the instrument are always assigned to a string with the functions from RSIB.BAS. However
reading trace binary data in real format is much faster and the processing of float values simpler than
working with ASCII format. The assignment of the data to an array of float values can be done as follows:

1EZ33_0E.DOC 11 22 May 1997

The function declaration of RSDLLibrd() in RSIB.BAS remains unchanged:

Declare Function RSDLLibrd Lib "rsib.dll" (ByVal ud%, ByVal Rd$, ibsta%,
iberr%, ibcntl&) As Integer

To place data directly into an array of float values, the string variable must be replaced by a suitable
structure like the following:

Type TRACEREAL
 len As String * 6 ' Header der Real Data "#42000"
 Points(500) As Single ' Float-Array
End Type

Note: The structure must be defined in a code module.

In order to pass the structure by reference to the DLL, a special function declaration must be created:

Declare Function RSDLLibrdTraceReal Lib "rsib.dll" Alias "RSDLLibrd"
(ByVal ud%, rd as Any, ibsta%, iberr%, ibcntl&) As Integer

Using this function trace data can be read from a reply buffer of type TRACEREAL .

4.3 C / C++

• Accessing the RSIB.DLL functions

The functions of the library RSIB.DLL are declared in the header file RSIBC.H. The DLL functions can be
linked to the C/C++ program in three different ways.

1. Generate the import library RSIB.LIB from RSIB.DLL using IMPLIB.EXE and add it to the project.

2. Specify the functions from RSIB.DLL in the module definition file (*.def) in the section IMPORTS .

3. Load the DLL at run time using the function LoadLibrary() and get the function pointers using
GetProcAddress() . Unload RSIB.DLL from memory with FreeLibrary() before exiting the
program.

In the first two cases the DLL will be loaded automatically at the startup of the application. It will be
unloaded at program end provided that no other applications use it. Visual Basic for Applications use the
third method in order to call functions from a DLL.

4.4 Excel
Microsoft Excel uses Visual Basic for Applications as macro language, so the functions of the library
RSIB.DLL can be used in their Visual Basic format. The following sample macro performs a band-filter
measurement and generates a hardcopy of the magnitude and phase of the transmission function. It uses
the English versions of the object and VBA libraries (XLEN50.OLB and VBAEN.OLB). The macro has
been tested with the German version of Excel 5.0 and should run without modifications in other languages
since these two libraries are part of all Excel 5.0 installations. The macro is contained in the attached file
ZVRDDE.XLS.
'
' BFilHcopy Macro
' Perform band-filter measurement
' and make hardcopy
'
'----------------------------------
' Declarations of the DLL functions
'----------------------------------
Declare Function RSDLLibfind Lib "RSIB.DLL" (ByVal udName$, ibsta%, iberr%, ibcntl&) As Integer
Declare Function RSDLLibwrt Lib "RSIB.DLL" (ByVal ud%, ByVal Wrt$, ibsta%, iberr%, ibcntl&) As
Integer
Declare Function RSDLLibrd Lib "RSIB.DLL" (ByVal ud%, ByVal Rd$, ibsta%, iberr%, ibcntl&) As
Integer
Declare Function RSDLLibwrtf Lib "RSIB.DLL" (ByVal ud%, ByVal File$, ibsta%, iberr%, ibcntl&) As
Integer
Declare Function RSDLLibrdf Lib "RSIB.DLL" (ByVal ud%, ByVal File$, ibsta%, iberr%, ibcntl&) As
Integer

Excel File
File Zvrdde.xls can be found in directory English\Tech_inf\Applic\Excel on this CD-ROM.

1EZ33_0E.DOC 12 22 May 1997

Declare Function RSDLLilwrt Lib "RSIB.DLL" (ByVal ud%, ByVal Wrt$, ByVal Cnt&, ibsta%, iberr%,
ibcntl&) As Integer
Declare Function RSDLLilrd Lib "RSIB.DLL" (ByVal ud%, ByVal Rd$, ByVal Cnt&, ibsta%, iberr%,
ibcntl&) As Integer
Declare Function RSDLLTestSrq Lib "RSIB.DLL" (ByVal ud%, Result%, ibsta%, iberr%, ibcntl&) As
Integer
Declare Function RSDLLWaitSrq Lib "RSIB.DLL" (ByVal ud%, Result%, ibsta%, iberr%, ibcntl&) As
Integer
Declare Function RSDLLibtmo Lib "RSIB.DLL" (ByVal ud%, ByVal tmo%, ibsta%, iberr%, ibcntl&) As
Integer
Declare Function RSDLLibsre Lib "RSIB.DLL" (ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As
Integer
Declare Function RSDLLibloc Lib "RSIB.DLL" (ByVal ud%, ibsta%, iberr%, ibcntl&) As Integer
Declare Function RSDLLibeot Lib "RSIB.DLL" (ByVal ud%, ByVal v%, ibsta%, iberr%, ibcntl&) As
Integer

Declare Sub RSDLLibwrts Lib "RSIB.DLL" (ByVal ud%, ByVal Wrt$, ibsta%, iberr%, ibcntl&)

'---
' Definitions of the bits within status word ibsta
'---
Global Const IBSTA_ERR = &h8000
Global Const IBSTA_TIMO = &h4000
Global Const IBSTA_CMPL = &h100

'-------------------------------
' Codes for error variable iberr
'-------------------------------
Global Const IBERR_DEVICE_REGISTER = 1
Global Const IBERR_CONNECT = 2
Global Const IBERR_NO_DEVICE = 3
Global Const IBERR_MEM = 4
Global Const IBERR_TIMEOUT = 5
Global Const IBERR_BUSY = 6
Global Const IBERR_FILE = 7

Sub BFilHcopy()
 Dim ud%, status
 Dim buffer$, cmd$
 Dim ibsta%, iberr%, ibcntl&

' get handle for device
 ud% = RSDLLibfind("@local", ibsta%, iberr%, ibcntl&)
 If (ud% < 0) Then
 ' error - exit
 msgText = "Could not connect to instrument"
 msgMode = vbYes + vbCritical
 msgTitle = "RSIB-Interface"
 respo = MsgBox(msgText, msgMode, msgTitle)
 Else
 ' reset device
 cmd$ = "*RST"
 ' send SCPI command
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)

 ' set timeout to 30s
 status = RSDLLibtmo(ud%, 30, ibsta%, iberr%, ibcntl&)
 ' switch instrument to remote state
 status = RSDLLibsre(ud%, 1, ibsta%, iberr%, ibcntl&)
 ' turn display update on
 cmd$ = ":SYST:DISP:UPD ON"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)

 ' set frequency range 2.2GHz ... 2.25GHz
 cmd$ = ":SENS:FREQ:STAR 2.2GHz;:SENS:FREQ:STOP 2.25GHz"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' set measured quantity to transmission forward (S21)
 cmd$ = ":SENS1:FUNC 'XFR:POW:S21'"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' change display to dual split
 cmd$ = ":DISP:FORM DSPLit"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' set format of channel 1 to magnitud%e and channel 2 to group delay
 cmd$ = ":CALC1:FORM MAGN;:CALC2:FORM GDEL"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' perform autoscale on channel 2
 cmd$ = ":DISP:WIND2:TRAC1:Y:SCAL:AUTO ONCe"

1EZ33_0E.DOC 13 22 May 1997

 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' switch on bandfilter markers
 cmd$ = ":CALC1:MARK1 ON;:CALC1:MARK1:FUNC BFIL"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' set filter search params
 cmd$ = ":CALC1:MARK1:FUNC:BWID 3dB"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' set markers search function to bandpass filter mode
 cmd$ = ":CALC1:MARK1:FUNC:BWID:MODE BPASS"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' switch to single sweep
 cmd$ = ":INIT:CONT OFF"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 cmd$ = ":INIT:IMM;*WAI"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' perform search
 cmd$ = ":CALC1:MARK1:SEARCH;*WAI"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)

 ' generate hardcopy in WMF format, portrait, to file c:\user\data\bfilt.wmf
 cmd$ = ":MMEM:CDIR 'C:\USER\DATA'"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 cmd$ = ":MMEM:NAME 'BFILT.WMF'"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 cmd$ = ":HCOP:DEV:LANG1 WMF;*WAI"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 cmd$ = ":HCOP:PAGE:ORI PORT"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 cmd$ = ":HCOP:DEST 'MMEM'"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' start hardcopy
 cmd$ = ":HCOP:IMM;*WAI"
 status = RSDLLibwrt(ud%, cmd$, ibsta%, iberr%, ibcntl&)
 ' switch instrument back to local
 status = RSDLLibsre(ud%, 0, ibsta%, iberr%, ibcntl&)

 ' insert meta file
 ChDir "C:\USER\DATA"
 ActiveSheet.Pictures.Insert("BFILT.WMF").Select
 End If

End Sub

1EZ33_0E.DOC 14 22 May 1997

4.5 Winword
The functions of the library RSIB.DLL can be accessed from Winword macros with some restrictions. The
function declarations contained in the file rsibwb.bas must be copied into the macro.

Restrictions:

Declaring functions with the statement Declare allows for parameters of type integer to be passed by
value only. Since the functions of the library RSIB.DLL expect references for the variables ibsta, iberr and
ibcntl these must be declared as strings. This fact has to be taken into account when checking error
codes and requesting values from the instrument.

Note that Winword 2.0 and 6.0 do not use Visual Basic for Applications, the macro therefore is always
language specific.

Johannes Ganzert, 1ES1
Rohde & Schwarz
28 April 1997

	Start
	List of Application Notes
	Accessing Measurement Data and Controlling the ZVR
	 Overview
	Installation and Configuration
	RSIB Programming Interface
	Programming Hints
	General
	Visual Basic
	C / C++
	Excel
	Winword

